
Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Linux security event
monitoring with osquery

QueryCon 2019

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Alessandro Gario
Senior Security Engineer

alessandro.gario@trailofbits.com
www.trailofbits.com

2

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Overview

1. Event-based tables on Linux
2. Audit 101
3. The next big thing
4. What’s eBPF
5. Journey from zero to process_events

Disclaimer: I like Spaceballs

3

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

State of the
event-based

tables

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

hardware_events, syslog_events

Awesome!

● Low memory usage
● Not many events to process
● Low CPU usage

5

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

file_events

Kind of annoying:
● Watchers have to be updated as events

come in
● Relies on (globbing) existing files
● Prone to losing events
● No way to know if events were lost

6

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

How to break file_events

Example

$ cd /monitored

$ mkdir -p 1/2/3/4/5 && \

 date > 1/2/3/4/5/hidden_file

7

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

How to make file_events lose changes

8

inotify

WE BRAKE FOR NOBODY

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Audit tables

Interesting:
● Good insight on each event
● Can monitor most things

Not perfect:
● Uses a lot of memory
● Consumes a lot of CPU

9

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Can we do better?

Data sources alone determine the fate of the table’s
quality, not the actual code:

● How much memory is used?
● How much processing is required?
● Can events be trusted?

10

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Audit 101

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

A system tracing utility
● Syscalls
● System events

Used by most event-based tables:
● process_events
● socket_events
● user_events
● selinux_events
● process_file_events

What is Audit?

12

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

NOTHING!
Teddy and I wrote it

If you don’t like it, you are
WRONG

What is wrong with Audit?

13

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

● Only one Audit consumer*
● Text-based
● Multiple records need to be a

aggregated to create event context
● High memory footprint
● High CPU usage

What is actually wrong with Audit?

14

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

The next
big thing

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Finding the next big thing

What would we like?
● Event tracing
● Syscall tracing
● Context information for each event
● Binary data instead of text walls

16

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

I’ve heard about a thing called eBPF

AMAZING
● Tracepoints!
● More tracepoints! Kprobes! Uprobes!
● Not much context information!
● Binary data! Finally!

eBPF looks like a good candidate!
17

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

What’s eBPF

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

eBPF 101

A technology to load arbitrary programs and have them run
when a specific event occurs:

● Tracepoints: manually defined in the source, stable interface
● kprobes: basically code hooking

More data sources exist, but we are only interested in the first
two

19

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

eBPF 102

● eBPF programs are:
○ compiled into bytecode
○ Sandboxed
○ Verified kernel-side upon load

Can be built:
● Manually, with raw BPF opcodes
● Official toolchain

20

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

BPF Compiler Collection (BCC)

21

A toolkit for creating and compiling eBPF
programs:

● developed by IOVisor,
● offers kernel instrumentation in C,
● has front-ends in Python and Lua,
● built on top of LLVM and Clang

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Journey from zero
to process_events

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

What’s inside process_events anyway?

23

Many fields, but let’s start with the
following ones:

● pid
● path
● cmdline

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Our initial implementation

24

#include <uapi/linux/ptrace.h>
#include <uapi/linux/limits.h>

typedef struct {
 u32 pid;
 char filename[NAME_MAX]; // 256 bytes
} ExecveData;

BPF_PERF_OUTPUT(events);

int sys_enter_execve(struct tracepoint__syscalls__sys_enter_execve *args)
{
 ExecveData execve_data = {};
 execve_data.pid = (u32) (bpf_get_current_pid_tgid() >> 32);

 // We can't directly access user memory
 bpf_probe_read(&execve_data.filename,
 sizeof(execve_data.filename),
 args->filename);

 events.perf_submit(args, &execve_data, sizeof(ExecveData));
 return 0;
};

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Our initial implementation

25

#include <uapi/linux/ptrace.h>
#include <uapi/linux/limits.h>

typedef struct {
 u32 pid;
 char filename[NAME_MAX]; // 256 bytes
} ExecveData;

BPF_PERF_OUTPUT(events);

int sys_enter_execve(struct tracepoint__syscalls__sys_enter_execve *args)
{
 ExecveData execve_data = {};
 execve_data.pid = (u32) (bpf_get_current_pid_tgid() >> 32);

 // We can't directly access user memory
 bpf_probe_read(&execve_data.filename,
 sizeof(execve_data.filename),
 args->filename);

 events.perf_submit(args, &execve_data, sizeof(ExecveData));
 return 0;
};

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Our initial implementation

26

#include <uapi/linux/ptrace.h>
#include <uapi/linux/limits.h>

typedef struct {
 u32 pid;
 char filename[NAME_MAX]; // 256 bytes
} ExecveData;

BPF_PERF_OUTPUT(events);

int sys_enter_execve(struct tracepoint__syscalls__sys_enter_execve *args)
{
 ExecveData execve_data = {}; // Declare a new struct on stack
 execve_data.pid = (u32) (bpf_get_current_pid_tgid() >> 32);

 // We can't directly access user memory
 bpf_probe_read(&execve_data.filename,
 sizeof(execve_data.filename),
 args->filename);

 events.perf_submit(args, &execve_data, sizeof(ExecveData));
 return 0;
};

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Our initial implementation

27

#include <uapi/linux/ptrace.h>
#include <uapi/linux/limits.h>

typedef struct {
 u32 pid;
 char filename[NAME_MAX]; // 256 bytes
} ExecveData;

BPF_PERF_OUTPUT(events);

int sys_enter_execve(struct tracepoint__syscalls__sys_enter_execve *args)
{
 ExecveData execve_data = {};
 execve_data.pid = (u32) (bpf_get_current_pid_tgid() >> 32);

 // We can't directly access user memory
 bpf_probe_read(&execve_data.filename,
 sizeof(execve_data.filename),
 args->filename);

 events.perf_submit(args, &execve_data, sizeof(ExecveData));
 return 0;
};

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

First challenge

28

The filename parameter is truncated at 256 bytes.

You COULD increase the array size, but here’s the
thing: stack is limited to 512 bytes.

Can we do better?

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

First workaround: PER-CPU maps to the rescue!

29

BPF_PERCPU_ARRAY(temp_execve_data,
 ExecveData, 1);
...
int index = 0;

// Make sure to check for NULL values!
ExecveData *execve_data_ptr =
 temp_execve_data.lookup(&index);

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Second challenge: other parameters?

30

We only have the binary name!
What about program arguments?

Let’s take a look at two possible workarounds:
● Use a bigger map
● Create additional maps

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Second workaround/a: Using bigger maps

31

Too much space across
perf_events. Will make it easy
to lose events.

typedef struct {
 u32 pid;
 char filename[512];

 char param1[512];
 char param2[512];
 char param3[512];
 ...
} ExecveData;

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Second workaround/b: Using additional maps

Step two: index mapStep one: data map Step three: event object

typedef struct {
 char bytes[2048];
} StringBuffer;

PER_CPU_ARRAY(
 string_data,
 StringBuffer,
 1000
);

PER_CPU_ARRAY(
 string_data_index,
 int,
 1
);

typedef struct {
 u32 pid;
 char filename[512];
 int parameters[20];
} ExecveData;

32

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Challenge 3

33

We are still only getting N parameters!
String size is still limited!

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Workaround 3

34

NONE :(

Additional eBPF limitations
● Jumps can only go forward
● Only 4096 instructions per program

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Different approaches

35

● Dedicated tracepoints
● Deeper inspection with

kprobes

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

Conclusions

Trail of Bits | Linux security event monitoring with osquery | 06.21.2019

● Audit is not that bad!
● eBPF is hard
● Using eBPF like we use Audit doesn’t

work
● Teddy is a super hero

Conclusions

37

